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Abstract

The inductive bias of generative adversarial networks is
a powerful tool for learning distributions of data. How-
ever, these models are difficult to train and very susceptible
to mode collapse, capturing only a few modes of the data
distribution. In this work, we introduce bidirectional latent
optimized generative adversarial networks as a framework
for training generative adversarial networks to mitigate this
problem by encouraging the generator to maintain a map-
ping to the data distribution.

1. Introduction

Generative Adversarial Networks (GANs) are a class of
generative models that learn a data distributions. GANs
have achieved impressive results on various computer vi-
sion tasks such as image generation [10, 4, 11], style trans-
fer [26, 27, 9], and domain adaptation [22, 20, 19] among
others. However, GANs are still notoriously difficult to
train without careful hyperparameter tuning and susceptible
to mode collapse.

1.1. Motivation

The optimal generator in the GAN setup can be seen as
an approximation of the training data. In fact, in [7], Good-
fellow et al. show that the optimal generator has the same
distribution of data samples as the training data. If this is
actually true, then it should be possible to sample the train-
ing data from the implicit distribution defined by the gen-
erator. However, the generator training process is unstable
and susceptible to mode collapse, often losing its capabil-
ity to generate diverse samples. By forcing the generator to
maintain a mapping, we hope to encourage the generator to
generate diverse samples.

All code will be available at github.com/sharath/logan-b.

1.2. Related Work

1.2.1 LOGAN: Latent Optimization for GANs

Very recently, Wu et al. introduced a similar form of latent
optimization in [23] where the latent space is jointly opti-
mized with the generator and discriminator. They use the
natural gradient [1] to optimize the latent and show that it
results in better IS/FID scores on BigGAN [4]. This defini-
tion of latent optimization differs from the one defined by
[3], which is the focus of this work.

1.2.2 EBGAN: Energy-based GANs

In [25], Zhao et al. propose EBGAN, a GAN which uses an
autoencoder in the discriminator network to encourage the
generator network to produce images that contain features
that can be used to reconstruct itself. This can be seen as
a form of regularization to retain the training data in the
generator’s implicit distribution.

1.3. Contributions

Our contributions are as follows:

• We introduce latent optimization for an encoder in a
bi-directional generative adversarial network using a
surrogate reconstruction loss.

• We show that our framework captures the space of
the true distribution more accurately than the GAN [7]
baseline on a synthetic dataset.

• We show that our framework stabilizes post hoc [6]
reconstructions on MNIST and CIFAR10.

2. Background
This section provides a background on GANs, latent op-

timization, and latent space image embedding.

2.1. Generative Adversarial Networks

GANs were introduced in [7] by Goodfellow et al. In the
GAN setting, we wish to find a discriminator D and a gen-
erator G that satisfy a mini-max game for a data distribution
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pX and a prior distribution pZ . In practice, we represent G
and D using neural networks and we optimize the parame-
ters of the networks in a joint manner alternating between
each network, in a manner that can be seen as two players
taking turns:

min
G

max
D

E
x∼pX

[log(D(x))] + E
z∼pZ

[log(1−D(G(z)))] .

(1)

2.2. Generative Latent Optimization

The generative latent optimization (GLO) framework
was proposed by Bojanowski et al. in [3]. For a large set
of images, {xi}Ni=1, with each image xi ∈ X , we assign
a d-dimensional vector zi ∈ Z to each image. Then per-
form a joint optimization of the parameters of the generator
network and the noise vector for the input to the network:

min
G

1

N

N∑
i=1

[
min
zi∈Z

`(G(zi), xi)

]
. (2)

2.3. Latent Space Embedding

A variety of methods have been proposed to find la-
tent embeddings for natural images in the Generator’s latent
space. In this work, we compare against the Bidirectional
GAN (BiGAN) [5] and variants of optimization [2] on the
input. More formally, the latent space embedding z of a
natural image x can be written as the following optimiza-
tion problem:

min
z∈Z

`(G(x), x). (3)

In (3), ` is a distance metric between two images. Pos-
sible choices for ` include L1/L2, perceptual distance [24],
and Laplacian pyramid loss [14] among others.

2.3.1 Input Optimization

One approach to obtaining an embedding for an image is
by optimizing the input directly. Other variations of this
include stochastic clipping for priors with finite supports,
proposed by Tripathi et al. in [15] and layer-wise optimiza-
tion proposed by Bau et al. in [2]. In this approach, we
initialize an input noise vector by sampling from the prior
and then perform gradient descent on the input to minimize
the distance metric.

2.3.2 Bidirectional Generative Adversarial Networks
(BiGANs)

Another approach to obtain latent space image embeddings
is to pass the natural image through an encoder network that
is trained jointly with the the Generator. This jointly trained

network is called an ad hoc encoder. In the BiGAN frame-
work, the generator and encoder are inverses of each other
at the global optima [5, 6]. The optimization problem is
framed as the following:

min
G,E

max
D

E
x∼pX

[log(D(x,E(x)))]+ E
z∼pZ

[log(1−D(G(z), z))] .

(4)

2.4. Performance Metrics

This section provides an overview of the metrics we use
to measure performance.

2.4.1 Inception Score

Inception score (IS) is a metric for evaluating the quality
of samples from a generator [18]. The score is calculated
using features from the Inception network [21]. Salimans
et al. found that that the IS metric is correlated with human
evaluation. Higher values of IS correspond to a “better”
generator network.

2.4.2 Fréchet Inception Distance

Fréchet Inception Distance (FID) is a distance metric pro-
posed by Heusel et al. in [8] as an improvement over the
IS metric by using the statistics of the training dataset. The
FID metric has also been shown to be more robust to dis-
turbances to samples such as noise and occlusions. This is
a distance metric, so lower values of FID correspond to a
“better” generator network.

2.4.3 Reconstruction Error

While IS and FID are reasonable [17] metrics for sample
quality, we also report the average reconstruction error of
an encoder trained after the generator. We refer to this as
the post hoc [6] encoder, in contrast to the BiGAN encoder
which is ad hoc. We train an encoder network using the
latent random noise as the target and images from the gen-
erator as the input 5 times. Then we compute the mean and
standard deviation of the reconstruction losses on the hold-
out data and report that. Low values for reconstruction error
indicate:

1. the extent to which the generator captures the distribu-
tion of the training data

2. and the invertibility of the generator, which can be seen
as a measure of latent optimality.
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Figure 1. Overview of the adversarial and surrogate setup for
LOGAN-B. First we update discriminator, generator, and encoder
using adversarial losses. Then we update the encoder and genera-
tor using the surrogate reconstruction loss.

3. Bidirectional Latent Optimized Generative
Adversarial Network

The bidirectional latent optimized GAN (LOGAN-B)
jointly trains an encoder E, generator G, and discrimina-
tor D with the following loss functions:

LG = E
z∼pZ

[log(1−D(G(z), z))] + LS (5)

LE = E
x∼pX

[log(D(x,E(x)))] + LS (6)

LD = − E
x∼pX

[log(D(x,E(x)))]− E
z∼pZ

[log(1−D(G(z), z))]

(7)
where LS is the surrogate reconstruction loss:

LS = E
x∼pX

[`(x,G(E(x)))] (8)

3.1. Relationship to BiGAN and GLO

In the BiGAN framework, the optimal encoder is capable
of inverting the optimal generator [5]. This is a form of
latent optimization as defined by Bojanowski et al. in [3]:

min
G

1

N

N∑
i=1

[
min
zi∈Z

`(xi, G(zi))

]
(9)

min
G,E

1

N

N∑
i=1

[`(xi, G(E(xi)))] (10)

≈ min
G,E

E
x∼pX

[`(x,G(E(x)))] (11)

The problems defined by (10) and (11) are equal as N
approaches∞ [5] . Under the same conditions, the optimal
generator and encoder in the BiGAN framework also satisfy
all of these optimization problems:

min
G,E

E
x∼pX

[`(x,G(E(x)))] (12)

min
G,E

E
x∼pX

[`(E(x), E(G(E(x))))] (13)

min
G,E

E
x∼pX

[`(x,G(E(G(E(x)))))] (14)

min
G,E

E
x∼pX

[`(E(x), E(G(E(G(E(x))))))] (15)

. . .

Under the same conditions, these are also all equivalent
optimization problems over the latent space:

min
G,E

E
z∼pZ

[`(z, E(G(z)))] (16)

min
G,E

E
z∼pZ

[`(G(z), G(E(G(z))))] (17)

min
G,E

E
z∼pZ

[`(z, E(G(E(G(z)))))] (18)

min
G,E

E
z∼pZ

[`(G(z), G(E(G(E(G(z))))))] (19)

min
G,E

E
z∼pZ

[`(z, E(G(E(G(E(G(z)))))))] (20)

. . .

Donahue et al. propose (16) in [5] as the latent regressor.
They show that using (16) performs poorly since the gener-
ator is not actually optimal during training. Furthermore,
they argue that this has limited benefits: Since the encoder
never sees the training data, the loss biases the optimization
towards a local optima near its current parameters rather
than near the global minimum. To rectify this, we propose
using samples from the training data to minimize (12) as the
surrogate loss. We speculate that other combinations may
contain useful gradients, but leave them to future work.

4. Experiments
4.1. Synthetic Data

We consider a synthetic dataset of 8 Gaussian distribu-
tions and report the reconstruction error (as defined in 2.4.3)
in Table 1. We use the L1 distance function for ` and a uni-
form noise distribution for the prior. Post hoc encoders are
initialized randomly and trained to estimate the input to the
generator that produced the samples. The ad hoc encoder
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Figure 2. Reconstructions on the synthetic Gaussian mixture dataset. Reconstructions for GAN, BiGAN, and LOGAN-B (left-to-right) for
both ad hoc (top) and post hoc (bottom) trained encoders. The BiGAN ad hoc encoder collapsed, but the post hoc encoder shows a more
accurate view of the performance of the BiGAN generator.

Method ad hoc post hoc
GAN 2.7937 0.1261± 0.0060
BiGAN 2.5036 1.4310± 0.0744
LOGAN-B 0.0271 0.0474± 0.0057

Table 1. Ad hoc/post hoc reconstruction errors on the synthetic
dataset.

for the GAN does not affect training, it is simply updated
with the generator.

The reconstructions (Figure 4.1) that the BiGAN en-
coder collapses to during training always map to the cen-
ter of the ring. However, the post hoc encoder for the same
generator network shows that the generator still maintains
mappings from the latent space to some of the Gaussian dis-
tributions in the training data.

4.2. MNIST

For our experiments on the MNIST [13] dataset, we use
LOGAN-B with the DCGAN [16] architectures for the gen-
erator and discriminator and an inverted DCGAN generator
for the encoder. MNIST images were resized to 32×32 and
normalized. Performance metrics were computed after the
10th epoch.

Method ad hoc post hoc IS FID
DCGAN 290.82 101.76± 3.76 2.13 71.68
BiGAN 720.15 720.04± 0.49 1.00 431.01
LOGAN-B 29.99 31.01± 1.33 2.01 40.23

Table 2. Ad hoc/post hoc reconstruction errors and IS/FID scores
for MNIST. Lower FID is better. Higher IS is better.

4.3. CIFAR10

For our experiments on the CIFAR10 [12] dataset, we
use LOGAN-B with the DCGAN [16] architectures for the
generator and discriminator and a inverted generator for the
encoder. CIFAR10 images were normalized. Performance
metrics were computed after the 25th epoch.

Method ad hoc post hoc IS FID
DCGAN 1649.95 919.49± 11.34 2.42 227.70
BiGAN 1567.17 1578.30± 1.54 1.00 426.72
LOGAN-B 590.09 372.04± 4.38 4.04 140.63

Table 3. Ad hoc/post hoc reconstruction errors and IS/FID scores
for CIFAR10. Lower FID is better. Higher IS is better.
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Figure 3. Bootstrapping results on the CIFAR10 dataset. The first column contains the original images from the dataset. The number of
bootstraps increases from left-to-right and is indicated at the top.

4.4. Bootstrapping

One way to qualitatively visualize the reconstruction loss
is by bootstrapping: sampling from the training data, pass-
ing through the encoder and then passing the latent embed-
ding again through the generator. The results from perform-
ing this on CIFAR10 are shown in Figure 3. Interestingly,
the last few columns seem to not change despite the number
of bootstraps growing exponentially.

5. Discussion

The results indicate that the BiGAN training is the least
stable of the three models that we considered. This in-

stability is most likely caused by a lack of proper hyper-
parameters. In practice, it can be expensive to tune hyper-
parameters when the space of hyperparameters that work is
small. This is an additional weakness of the BiGAN model.
We have introduced a form of latent optimization for a bidi-
rectional GAN (LOGAN-B) and shown improved ability to
capture the space of the true distribution. We have also
shown that the generator in the LOGAN-B framework can
be more easily inverted due to the latent optimization pro-
vided by real training data. A limitation to this work is that
we only considered L1 loss for reconstruction. This type
of loss is unlikely to scale for larger natural image datasets.
Future work in this area should keep that in mind.
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